Téléinformatique de base

Chapitre 6
Routage

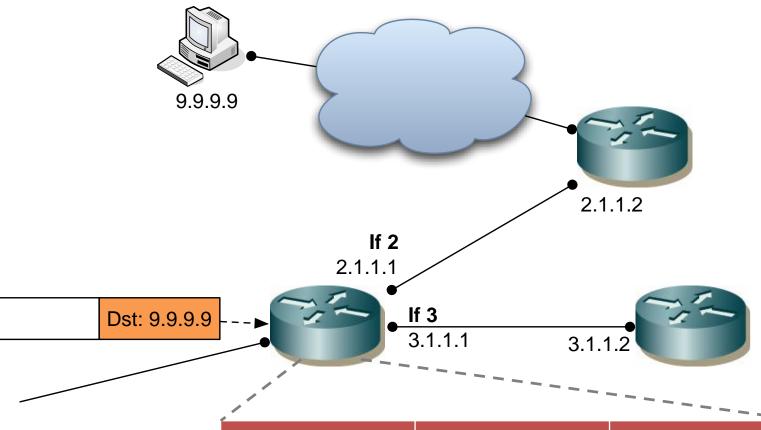
Objectifs d'apprentissage

- Savoir expliquer le processus d'acheminement d'un paquet sur un routeur
- Savoir expliquer la différence entre remise directe et remise indirecte ainsi que l'utilisation des adresses IP et MAC dans les deux cas
- Pour un réseau donné, savoir identifier les routes nécessaires sur chacun des routeurs
- Pour un réseau donné, savoir appliquer manuellement la méthode de RIP pour calculer les routes
- Connaître la distinction entre les deux niveaux de routage (à l'intérieur des Systèmes Autonomes et à l'extérieur)

Routage

Comment un routeur achemine-t-il un paquet IP?

- Chaque paquet IP contient l'adresse de destination
- Le routeur a une table de routage


Réseau de destination	Prochain routeur	Interface de sortie
123.0.0.0	216.1.2.3	Interface 1

- Le routeur cherche dans sa table l'entrée pour le réseau de destination
- Si aucune route trouvée:
 - Utiliser la route par défaut, s'il y en a
 - Ecarter le paquet avec une erreur « Non routable »

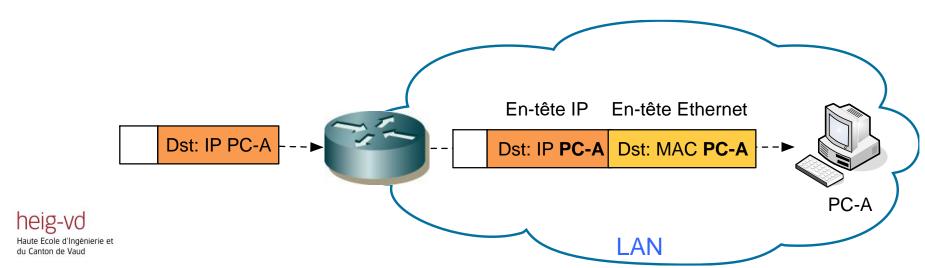
Acheminement et routage

- Il faut distinguer acheminement et routage
- Acheminement (forwarding):
 - Fonctionnalité du protocole IP
 - IP utilise la table de routage pour déterminer le prochain saut
 - Exécutée pour chaque paquet (rapide !)
- Routage (routing)
 - Fonctionnalité des protocoles de routage, comme RIP
 - Remplir la table de routage avec les routes optimales
 - Exécutée périodiquement pour mettre à jour les tables de routage (lente!)

Acheminement

Destination	Prochain routeur	Sortie
7.0.0.0	xxx	XXX
8.0.0.0	xxx	XXX
9.0.0.0	2.1.1.2	If 2

heig-vd

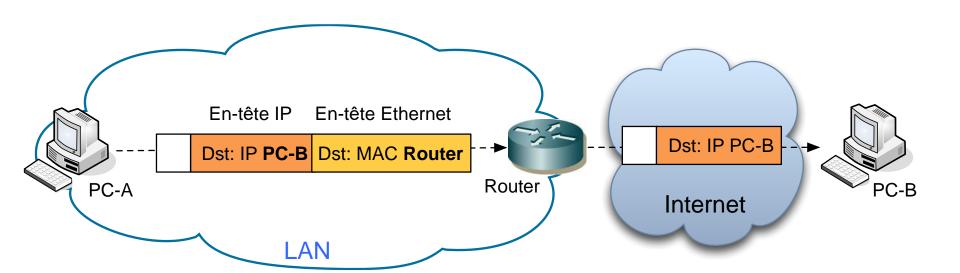

Haute Ecole d'Ingénierie et de Gestior du Canton de Vaud

Remise directe et remise indirecte

 Il est important de comprendre la relation entre adresse IP de destination et adresse MAC de destination

Remise directe

- Le destinataire se trouve dans le même réseau LAN
- La source / le routeur peut transmettre le paquet au destinataire sans passer par un autre nœud
- La source / le routeur construit une trame Ethernet avec comme adresse
 MAC destinataire celle du destinataire final



Remise directe et remise indirecte

 Il est important de comprendre la relation entre adresse IP de destination et adresse MAC de destination

Remise indirecte

- Le destinataire se trouve dans un autre réseau
- Il faut passer par un routeur intermédiaire pour atteindre le destinataire
- La source / le routeur construit une trame Ethernet avec comme adresse
 MAC destinataire celle du prochain nœud

Tables de routage

 Les tables de routage peuvent être remplies manuellement ou par un protocole de routage

Routage statique

- L'administrateur configure manuellement les routes
- Faisable pour de petits réseaux

Routage dynamique

- Les routeurs utilisent un protocole de routage pour s'échanger des informations avec les autres routeurs
- Le protocole de routage calcule les routes et remplit la table de routage
- Permet de s'adapter automatiquement aux pannes de liens

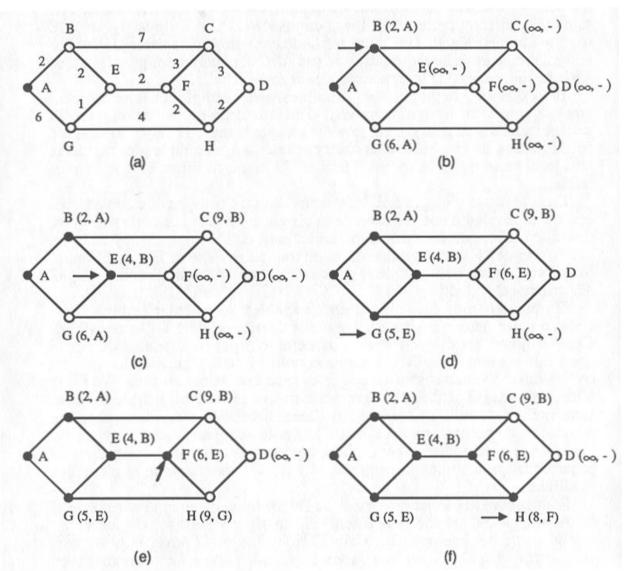
Routage statique

Quelles routes faut-il configurer?

- Un routeur connaît les réseaux directement connectés
- Il faut configurer les routes vers tous les autres réseaux

Destination	Prochain routeur	Sortie	
1.0.0.0/8	Directement connecté	If 1	
150.1.0.0/16	Directement connecté	If 2	
200.1.1.0/24	Directement connecté	If 3	Réseau A
Réseau A	150.1.1.2	If 2	
Réseau B	150.1.1.2	If 2	Réseau B
Réseau C	200.1.1.2	If 3	
Réseau D	200.1.1.2	If 3	150.1.1.2 Réseau
		If 1	Réseau Réseau
	1.	1.1.1/8	200.1.1.2
heig-vd			If 3 Réseau D
Haute Ecole d'Ingénierie du Canton de Vaud	e et de Gestion		200.1.1.1/24

Routage dynamique


- Nécessite un protocole de routage sur le routeur qui
 - communique avec les autres routeurs
 - remplit la table de routage du routeur
 - S'adapte aux changements (panne d'un lien, nouveau lien)
- Objectif des protocoles de routage
 - Trouver « le meilleur chemin » vers chaque destinataire
 - Différents métriques sont possibles
 - Nombre de sauts
 - Capacité des liens, délai, trafic, disponibilité ...

Le plus court chemin

Algorithme de Dijkstra

- Représenter le réseau par un graphe
- Pondérer chaque arête k par un coût p_k
- 0. Marquer chaque nœud par un doublet (C_i, N_x)
 - C_i: Distance totale de la source
 - N_x: Nœud précédent (pour reconstruire le chemin)
- Doublet de chaque nœud initialisé à (∞,−)
 à l'exception du nœud d'origine initialisé à (0,-)
- Choisir le nœud Ni avec le coût Ci le plus bas et qui n'est pas marqué et le marquer comme 'permanent'
- 3. Calculer les coûts des chemins de tous les voisins N_j du nœud N_i : $C_j = C_i + p_k$
- 4. Si la nouvelle valeur C_j est plus petite que l'ancienne,
 - --> actualiser le doublet de N_j : (C_j, N_i)
- 5. Répéter à partir de 2 jusqu'à ce que la destination soit marquée 'permanent'

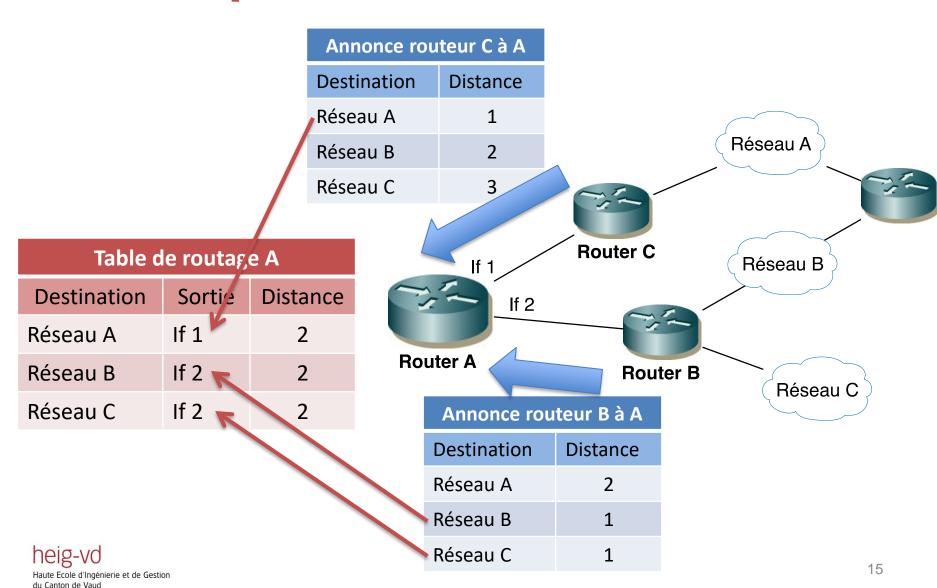
Exemple

Exemple d'un protocole de routage: RIP

RIP: Routing Information Protocol

- Protocole de routage simple
- Utilisé dans de petits réseaux
- Utilise le nombre de sauts comme métrique pour calculer le plus court chemin
- Facile à configurer
- Fait partie de la famille de protocoles à « Vecteur de distance »
- Mais implique certaines limitations
 - Le diamètre du réseau est limité à 15 sauts
 - La mise à jour des routes peut être lente dans certaines situations

Fonctionnement de RIP


- Chaque routeur maintient une table de routage qui indique les distances vers les réseaux destinataires
- Chaque routeur envoie périodiquement sa table de routage (« vecteur de distances ») à tous ses voisins
- Chaque routeur utilise les tables de routage reçues pour calculer ses routes

Algorithme de Bellman-Ford distribué

Pour calculer la meilleure route vers un réseau X

- Le routeur choisit la route la plus courte vers X parmi celles annoncées par les voisins
- Il incrémente la distance de la route de 1 pour tenir compte de la distance entre lui et le voisin

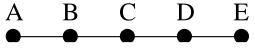
Exemple du calcul des routes

Propagation de bonnes nouvelles

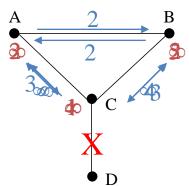
- Une meilleure route se propage rapidement
- Exemple simple :
 - Réseau linéaire
 - Distance: nombre de sauts
 - Nœud A vient de démarrer

A	В	C	D	E	
					,
	∞	∞	∞	∞	État initial
	1	∞	∞	∞	Après 1 échange
	1	2	∞	∞	Après 2 échanges
	1	2	3	∞	Après 3 échanges
	1	2	3	4	Après 4 échanges
					_

Propagation de mauvaises nouvelles


- Après une panne, le routage converge très lentement
- Exemple:
 - Lien entre A et B tombe en panne

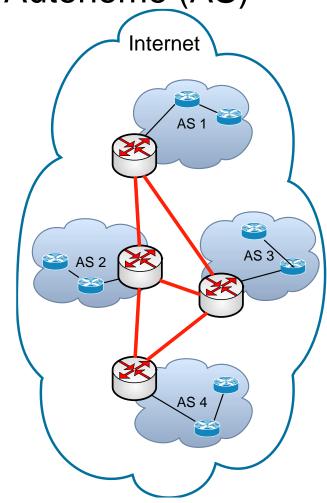
A	В	C	D	E	
	•			•	
	1	2	3	4	État initial
	3	2	3	4	Après 1 échange
	3	4	3	4	Après 2 échanges
	5	4	5	4	Après 3 échanges
	6	5	6	5	Après 4 échanges
	7	6	7	6	Après 5 échanges
	• • •	• • •	• • •	• • •	
	∞	∞	∞	∞	Après n échanges


Problème de la valeur infinie

Heuristiques pour accélérer la convergence

- 1. Définir une distance maximale n
 - Une distance au-delà de n est infinie
 - Limite la taille maximale d'un réseau
- 2. Horizon éclaté (*Split horizon*)
 - La distance vers une destination n'est pas annoncée au nœud suivant dans cette direction
 - Exemple
 - C n'annonce pas la route vers A à B

- 3. Horizon éclaté avec retour empoisonné
 - Un routeur avise ses voisins qu'une route est devenue impraticable avec une distance infinie



Niveaux de routage

 Un ou plusieurs réseaux sous le même contrôle administratif forment un Système Autonome (AS)

 Chaque AS est libre de choisir son protocole de routage

- Deux types de routage
 - Routage à l'intérieur d'un AS
 - Calcule les routes optimales
 - Par exemple RIP, OSPF, IS-IS
 - Routage entre les AS
 - Assure l'accessibilité des AS
 - Ne peut pas utiliser de métrique
 - Principalement le protocole BGP

