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Abstract 
Antibiotic resistance threatens the efficacy of currently-used medical treatments and call for novel, innovative approaches to manage multi

-drug resistant infections. Phage therapy use viruses (phages) to specifically infect and kill bacteria during their life cycle. Currently, there is 

no method to predict phage-bacterium interactions, and these pairs must be empirically tested in laboratory, a costly process in terms of 

time and money. To overcome such situation, we are currently exploring several computational approaches intended at predicting if a 

given phage-bacterium pair may interact reducing, thus, the number of required in vivo experiments.  

Data aquisition and management 

Public databases In vivo experiments 

Our data: 

• 2’028 bacteria 

• 3’810 phages 

2—Feature engineering 

Protein-protein interactions based Chemical composition based 

Machine-Learning approches 

A—Ensemble-learning 

Creation of a stacking approach 

composed by an odd number of 

supervised machine-learning 

models plus one meta-learner 

model that receive the results of 

the other models to make its 

prediction.  

Utilization of models which can 

learn only with one class. We 

develop two workflows: 

• Predict the interactions 

• Validate our negative set 

B—One-class learning 

C—Deep-Learning: Recurrent neural Networks (RNN) D—Deep-learning: Convolutional Neural Network (CNN) 

Future work 

• Perform hyperparameter search for all approaches with different 

datasets configuration; 

• Increase our database with new organisms and interactions to 

allow us predict at the strain level; 

• Test the models with data extract from in vivo experiments ; 

• Analyze and determine new ways to transform the genome 

information into informative images.  
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Conclusions and future work 

• 2’301 positive interactions 

• 295 positive interactions (in vivo) 

• 132 negative interactions (in vivo) 

Application of deep-learning 

directly on the sequence 

using RNN. 
  

Transformation of the 

features extracted into 

image that can be analyzed 

by a CNN. 

1—Data 

Found by: 

Conclusions 

• These approaches use different phage-bacterium representation to 

train machine-learning models e.g.: from extracted features, 

complete genome, and informative images. This allow us to analyze 

and detect which are the most performant techniques to predict 

phage-bacterium interactions; 

• We have obtained 87% of sensitivity and 56% of specificity for the 

one-class learning approach which indicates that is a good a path to 

follow  (see poster N°42). 

SEN: 91%* 

SPE: 89%* 
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SEN: 88%* 

SPE: 77%* 

On going On going 


