Bachelor Courses
- Introduction à la science des données (ISD, 2021)
- 1. Outils pour la modélisation data-driven
- 2. Introduction à la science des données
- 3. Apprentissage automatique (Machine Learning)
- 4. Bibliothèques pour le calcul scientifique
- 5. Analyse exploratoire des données
- 6. Apprentissage supervisé
- 7. Evaluation des modèles
- 8. Apprentissage supervisé 2: algorithme LVQ
- 9. Régression linéaire
- 10. Données et caractéristiques
- 11. Apprentissage non-supervisé
- 12. Conclusions et perspectives
- Apprentissage par réseaux de neurones (ARN, 2022)
- 1. Machine Learning basics (reminder)
- 2. Perceptrons
- 3. Multi-Layer Perceptrons (MLP)
- 4. Neural Networks’ training
- 5. Neural Networks’ monitoring
- 6. Convolutional Neural Networks (CNN)
- 7. From Shallow to Deep Neural Networks
- 8. Convolutional Neural Network Architectures
- 9. Transfer Learning, Embeddings and Meta-Learning
- 10. Deep troubles
- 11. Deep Learning Applications
- 12. Beyond Convolutional Neural Networks
- Machine Intelligence (MIN 2023-)
- 01. Introduction: from GOFAI to modern AI
- 02. Self-supervised learning
- 03. Generative Adversarial Networks
- 04. Machine Learning and creativity
- 05. Reinforcement Learning
- 06. Deep Reinforcement Learning
- 07. Reinforcement Learning applications
- 08. Artificial Evolution
- 09. Embodied Cognition
- 10. From Collective Intelligence to Machivellian Intelligence
- 11. Agent-based models, Artificial Life and Complexity
- 12. Agent-based model applications
- Machine Learning (MLG 2016-2020)
- Interfaces Homme-Machine (IHM, 2018-2022)
- Architecture des ordinateurs (ARO1, 2003-2018)
- Développement de dispositifs médicaux (DDM, 2019 & 2020)
Master Courses
- Machine Learning (TSM_MachLe, 2017-)
- 9. Artificial Neural Networks
- 10. Deep Learning & Convolutional Neural Networks
- 12. Autoencoders
- 13. Recurrent Neural Networks
- 14. Dimensionality reduction
- Machine Learning on Big Data (MLBD 2016-)
- 1. Introduction
- 2. Image processing using Convolutional Neural Networks
- 3. Remote Sensing: a Big Data case study
- 4. Change and Anomaly detection in Big Spatiotemporal Data.
- Quantified Self (QSelf, 2018-2021)
- 1. Introduction to Quantified Self
- 2. Sensors for Quantified Self
- 3. Sensor data for Quantified Self
- 4. Quantified Self: physical state monitoring
- 5. Quantified Self: cognitive state monitoring
- AI for Games and Simulation (AIGS, 2012 & 2013)
- Smart Devices and Applications (SDA, 2010 & 2011)